Julio A. Vázquez

SITUACIÓN ACTUAL DE LA EPIDEMIOLOGÍA DE LA ENFERMEDAD MENINGOCÓCICA

Julio A. Vázquez

Laboratorio de Referencia de Neisserias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid)

Neisseria meningitidis, el agente causal de la enfermedad meningocócica, conocido como meningococo, es una de las especies que constituyen el género Neisseria, que se engloba, junto con los géneros Branhamella, Acinetobacter y Kingella dentro de la familia Neisseriaceae. El meningococo es una bacteria gramnegativa de pequeño tamaño (0,6-1,5 µm de diámetro), con una morfología característica, presentándose en forma de diplococos con las caras laterales adyacentes aplanadas.

En el género *Neisseria* sólo aparecen dos especies patógenas (*N. meningitidis* y *Neisseria gonorrhoeae*) y todas ellas tienen como característica común ser oxidasa y catalasa positivas. Las especies se diferencian por pruebas bioquímicas (tabla 1). Su temperatura óptima de crecimiento es de 35-37°C, mejorando mucho el rendimiento bajo condiciones de humedad relativa del 50% y concentraciones de CO₂ cercanas al 10%.

El hombre es el único reservorio conocido de esta especie bacteriana, aislándose de la nasofaringe de individuos sanos en porcentajes que oscilan entre un 4% y un 20%, porcentajes que están asociados con factores tales como la edad de los individuos, condiciones de endemia o epidemia, etc. En los casos de enfermedad invasiva se aísla de líquido cefalorraquídeo (LCR), sangre, petequias, líquido sinovial, etc. En el caso del aislamiento en nasofaringe, al no ser una muestra estéril, se hace necesario eliminar otra flora acompañante, incluyendo las neisserias saprofitas y otras especies comensales. En este caso, el medio selectivo más utilizado es el descrito por Thayer J.D. y Martin J.E. en 1966, consistente en agar chocolate suplementado con vancomicina, nistatina y colistina. El crecimiento en este medio constituye la base de la diferenciación inicial entre las dos especies patógenas ya mencionadas y el resto de las especies, que son saprofitas. Como regla general, las especies patógenas crecen en el medio selectivo mientras que las saprofitas no, aunque hay que señalar que Neisseria lactamica y Neisseria polysaccharea sí crecen, y también un limitado porcentaje del resto de las especies comensales. La identificación de N. meningitidis y su diferenciación de otras neisserias se realiza fundamentalmente por diferencias en la degradación de azúcares (glucosa, maltosa, sacarosa, fructosa y lactosa) y los perfiles enzimáticos. El meningococo degrada la glucosa y la maltosa, pero no la sacarosa, fructosa y lactosa. No obstante, se ha descrito el aislamiento de cepas maltosa-negativas que pueden ser erróneamente identificadas como N. gonorrhoeae. En este sentido, hay dos enzimas cuya detección es de especial relevancia en el género Neisseria. Así, la presencia de ?-glutamilaminopeptidasa es casi exclusiva de N. meningitidis mientras que la ß-galactosidasa es producida únicamente por N. lactamica.

El meningococo presenta una serie de antígenos característicos de especie, y algunos de ellos han sido utilizados para su tipificación. En este sentido, los más relevantes son el polisacárido capsular, que define el serogrupo de las cepas, las proteínas de clase 2/3 por las que se clasifican en diferentes serotipos y las proteínas de clase 1 que van a definir los serosubtipos. Adicionalmente, se ha utilizado el lipopolisacárido para clasificar las cepas en inmunotipos o lipopolisacaridotipos, aunque sólo unos pocos laboratorios recurren a este antígeno como marcador.

SEROGRUPO: SITUACIÓN EN ESPAÑA

Las cepas de meningococo están rodeadas, en su parte externa, de una cápsula de naturaleza polisacárida que cumple un papel fundamental en el proceso de invasión de la bacteria. Por lo tanto, puede decirse que la cápsula constituye un factor de virulencia para la especie, de tal manera que es extremadamente raro aislar, en casos de enfermedad invasiva, cepas de meningococo no capsuladas, muy frecuentes sin embargo en la nasofaringe de portadores asintomáticos.

El polisacárido capsular ha sido utilizado desde hace ya muchos años como la principal herramienta para la clasificación serológica de las cepas de meningococo. Con base en dicho polisacárido se han definido 13 serogrupos denominados A. B. C. D. X. Y. Z. 29E, W135, H, I, K, L. Clásicamente, sólo los serogrupo A, B y C eran responsables de la casi totalidad de casos de enfermedad invasiva. Sin embargo, en los últimos años se ha asistido a un aumento creciente de los serogrupos Y y W135, especialmente en ciertos países. Así, en ciudades de Estados Unidos, como Chicago, un tercio de los casos de enfermedad meningocócica están producidos por cepas de serogrupo Y, y este aumento ha sido igualmente constatado en países como Colombia e Israel. La importancia creciente del serogrupo W135 viene constatada por la aparición de un brote en Arabia Saudí en el año 2000, coincidiendo con la peregrinación a la Meca, circunstancia ésta que ha sido asociada con la aparición de brotes por las condiciones de elevada aglomeración y hacinamiento, etc. Posteriormente, este tipo de aislamientos fue responsable de pequeños brotes poco comunes en algunos países europeos y, especialmente, produjeron una epidemia de gran intensidad en Burkina Fasso, con más de 12000 casos en 2002. Así pues, la vigilancia de los cambios de incidencia de éstos y otros serotipos nos dará respuesta al interrogante que surge sobre si otros serogrupos no habituales serán más o menos frecuentes en el futuro.

El serogrupo parece condicionar parte del comportamiento epidemiológico temporal de las cepas. Así, las del grupo B son generalmente responsables de ondas epidémicas con periodos interepidémicos de duración variable, las de grupo C estarían más implicadas en la producción de brotes y ondas de corta duración y las cepas de serogrupo A son fundamentalmente responsables de las grandes epidemias, que cíclicamente aparecen en países subsaharianos, en un área que se conoce como "cinturón africano de la meningitis".

En España, el serogrupo B ha sido generalmente el mayoritario, al menos desde finales de los años 70 (Figura 1), representando durante la década de los años 80 entre un 80% y un 90% de los casos analizados en el Laboratorio Nacional de Referencia. Sin embargo, a finales de esa misma década se pudo observar un incremento gradual en el porcentaje de casos de enfermedad meningocócica producidos por cepas de serogrupo C. Este incremento fue más acusado a partir de 1994, de forma que durante 1996 y 1997 este serogrupo pasó a ser el mayoritario. Ese aumento fue asociado con un incremento en la tasa de incidencia general de enfermedad meningocócica, aumento que fue desigual en las diferentes Comunidades Autónomas. Esta situación condicionó que en 14 de las 17 Comunidades, desde diciembre de 1996 hasta finales de 1997, se decidiera realizar una campaña de vacunación entre los 2 y 19 años de edad, utilizando la vacuna entonces disponible A+C de polisacárido plano. Dicha vacuna demostró una alta eficacia a corto plazo, aunque tras un año, especialmente los grupos de edades inferiores, mostraron una rápida pérdida de anticuerpos protectores y por lo tanto, una rápida disminución de la eficacia, de tal forma que en años sucesivos se detectó un paulatino incremento en los niveles de las tasas de ataque de la enfermedad. Esta observación fue la que resultó determinante para que en otoño del año 2000, poco después de obtener la licencia en España, se recomendara la inclusión en el calendario de una nueva vacuna frente a meningococo de serogrupo C. Esta vacuna fue desarrollada según la misma estrategia de

conjugación del polisacárido que se había seguido unos años antes con la de *Haemophilus influenzae* tipo b. Al ser una vacuna conjugada, el tipo de respuesta es radicalmente diferente (es inmunógena desde los dos meses de edad y la respuesta que se obtiene es de larga duración) y como pasa en *H. influenzae*, tiene la capacidad de reducir las tasas de portadores, por lo que este tipo de vacuna previene la aparición de nuevos casos de enfermedad, y adicionalmente impide la transmisión del microorganismo. Este efecto, por el que aquellos colectivos que, bien por edad o bien por otras causas, y que no han recibido la vacuna se ven protegidos de forma indirecta, constituye probablemente hoy en día la mejor estrategia para el control de la enfermedad.

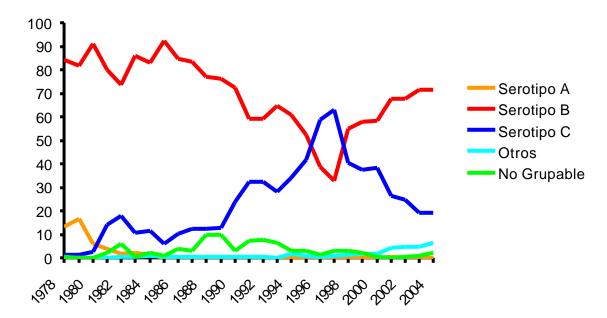


Figura 1. Epidemiología de la enfermedad meningocócica en España (1978-2004)

Tras cinco años de aplicación en España de las nuevas vacunas conjugadas, el descenso en el número de casos provocados por el serogrupo C ha sido dramático, situándose dicho descenso en torno al 90% en 2004. La caída en el número de casos de este serogrupo no ha venido acompañada de un aumento en las tasas del serogrupo B. Los serogrupos Y y W135 presentan un mayor número de casos en los últimos años, pero este aumento es aún poco significativo, por lo que podemos decir que no se ha observado, de momento, un fenómeno de reemplazamiento.

SEROTIPO Y SEROSUBTIPO

La membrana externa del meningococo está compuesta por proteínas, lipopolisacáridos y fosfolípidos. Las principales proteínas de membrana externa de *N. meningitidis* han sido definidas como proteínas de las Clases 1 a 5, en función de su peso molecular. Todas estas proteínas de membrana externa se localizan en la superficie celular, siendo la variabilidad antigénica asociada a las proteínas de Clase 2/3 (PorB) la base del serotipado de las cepas de meningococo, mientras que la variabilidad de las proteínas de Clase 1 (PorA) y, en menor medida, las de Clase 5 (Opa), se asocia al serosubtipado de las mismas.

Las proteínas de Clase 2 o PorB2 y Clase 3 o PorB3 están codificadas por dos alelos mutuamente excluyentes del gen *porB*, de forma que cada cepa expresa en su membrana externa sólo una de las dos clases. Estas proteínas, con una función de porinas, se

expresan de forma constitutiva, y son las proteínas predominantes de la membrana externa, siendo la base del tipado de las cepas de meningococo. En el modelo propuesto para las proteínas de Clase 2/3 se predice la existencia de ocho bucles hidrofílicos expuestos en superficie, observándose cuatro regiones variables (VR1, VR2, VR3 y VR4) localizadas en los bucles I, V, VI y VII. La asociación de un número restringido de serotipos con infecciones graves y el hecho de que en situaciones endémicas las cepas virulentas muestren una heterogénea distribución de serotipos, mientras que en situaciones epidémicas aparezca un serotipo como predominante, hacen de dicha variabilidad un marcador epidemiológico de gran utilidad.

Las proteínas de Clase 1 o PorA actúan también como porinas y son expresadas por la mayoría de las cepas clínicas, aunque con variaciones en los niveles de expresión. El gen que controla su expresión, el gen *porA*, muestra una estructura que es el resultado de progresivos sucesos de recombinación mediante transformación. La secuenciación de estas proteínas ha permitido conocer la existencia de tres regiones variables definidas como VR1, VR2 y VR3, siendo las dos primeras las que presentan un mayor grado de polimorfismo y las que constituyen la base para el serosubtipado de las cepas de meningococo.

En la actualidad, el tipificado y serosubtipado se realizan bien mediante un enzimoinmunoensayo, bien mediante *dot bl*ot, con un panel de anticuerpos monoclonales que por regla general determina siete serotipos (1, 2a, 2b, 4, 14, 15, 21) y 14 serosubtipos (P1.1, P1.2, P1.3, P1.4, P1.5, P1.6, P1.7, P1.9, P1.10, P1.12, P1.13, P1.14, P1.15, P1.16), aunque un porcentaje de las cepas, que puede oscilar entre un 30% y un 60%, puede resultar No Tipable (NT) o No SeroSubtipable (NST), o ambas cosas a la vez. Con la nomenclatura actual, las cepas quedan definidas por su serogrupo:serotipo:serosubtipo, como por ejemplo B:2b:P1.5,10 o C:NT:P1.13.

En España, por razones aún no bien comprendidas, se asiste a continuos cambios en los fenotipos/genotipos circulantes. Así, a principios de los años 90, las cepas de grupo C eran mayoritariamente caracterizadas como C:2b:NST, mientras que sólo unos años después, a partir de 1994, las cepas C eran mayoritariamente caracterizadas como C:2b:P1.5,2, de la línea clonal A4. Esta situación volvió a cambiar en el año 2000, de forma que la mayor parte de las cepas de serogrupo C aisladas en procesos invasivos resultaron ser C:2a:P1.5. La elevada mortalidad observada en los últimos años en casos de enfermedad invasiva meningocócica por serogrupo C podría estar relacionada con la introducción reciente de esta cepa C:2a:P1.5, que pertenece a la línea clonal conocida como ET37, definida junto con otras como "línea hipervirulenta". La situación es claramente diferente entre las cepas de serogrupo B. En este serogrupo, durante los últimos 15 años, entre un 30% y un 40% de los aislados son caracterizados como B:4:P1.15, del complejo clonal conocido como ET5. Esta situación en cuanto al fenotipo/genotipo predominante se ha mantenido con ligeras oscilaciones. Sin embargo, otro tipo de cepas ha subido y bajado en frecuencia sin motivo aparente. Así, las cepas B:15:P1.7,16, también del complejo ET5 fueron relativamente frecuentes (7%-10%) en la primera mitad de la década de los 90. Sin embargo, durante los últimos años de esa década y los primeros años del presente siglo, las cepas B:1:P1.6, de la línea clonal 3 están sustituyendo a las anteriores.

VACUNA. ACTUALIDAD Y PERSPECTIVAS DE FUTURO

Como ya se ha mencionado anteriormente, en la actualidad se encuentran disponibles vacunas conjugadas frente al serogrupo C. Este tipo de vacunas está introducido en el calendario infantil de vacunación desde otoño del año 2000, y han venido administrándose en un esquema de 2, 4 y 6 meses de edad en el caso de dos de las vacunas disponibles comercialmente, o de 2 y 4 meses en otra, cuya ficha técnica

autorizaba la aplicación de sólo dos dosis. Esta situación ha cambiado recientemente con la modificación de la ficha técnica de las tres vacunas disponibles, unificándose para todas la utilización de dos dosis en el primer año de vida y recomendándose la utilización de una tercera dosis en el segundo año de vida. Este cambio ha venido motivado por el hallazgo de que los niños que reciben sus dosis de vacuna durante los primeros 6 meses de vida, pierden gran parte de la eficacia protectora tan sólo un año después de recibir la última dosis. En España, además, han recibido este tipo de vacuna todos los individuos menores de 20 años en diferentes campañas realizadas por las Comunidades Autónomas.

Además de este tipo de vacunas, también están disponibles vacunas A+C de polisacárido purificado, sólo útil por encima de los 2 años de vida, y con una rápida pérdida de eficacia protectora ligada con la edad, y la vacuna A+C+Y+W135, de la misma característica de la anterior. Recientemente, se ha autorizado en Estados Unidos una nueva vacuna tetravalente conjugada A+C+Y+W135, que probablemente será autorizada en Europa próximamente. Con la epidemiología actual de la enfermedad meningocócica en España, esta vacuna sería de utilidad sólo para su aplicación en viajeros a zonas de hiperendemia o epidemia por alguno de los serogrupos incluidos.

La vacuna frente al serogrupo B aún está lejos de ser una realidad. Esto es debido, por un lado, a la escasa inmunogenicidad del polisacárido B y, por otro, a su identidad con envueltas de células neuronales humanas, lo que podría conducir a fenómenos de autoinmunidad. Si bien hay diversas líneas de desarrollo, actualmente la más adelantada es la que se basa en la utilización de proteína de clase 1, de forma que se recurriría a una vacuna con formulación antigénica, cubriendo los 6 tipos más frecuentes. No obstante, este tipo de estrategia presenta algunas dificultades en cuanto a diferente respuesta frente a cada antígeno, así como distribución muy desigual de los tipos en diversas regiones y continentes. Una estrategia interesante es la realizada recientemente en Nueva Zelanda, en donde se ha utilizado una vacuna que podríamos definir como "a la carta", desarrollando una vacuna con proteína de clase 1, específica para la cepa epidémica que estaba produciendo altas tasas de ataque en los últimos años. Sin embargo, esta estrategia sólo sería de aplicación en situaciones de epidemia por un tipo de cepa, mientras que en situaciones de endemia con una alta heterogenicidad de las cepas productoras de casos, su utilidad sería escasa. Otras aproximaciones interesantes incluyen modificaciones en el polisacárido B y utilización de otros antígenos diferentes tales como proteínas fijadoras de hierro y otros.

REGULACIÓN GENÉTICA DE LA EXPRESIÓN CAPSULAR

Es muy interesante el fenómeno descrito en el meningococo según el cual habría cepas con analogía genética que expresarían diferentes polisacáridos capsulares. Esto sugiere que los aislados podrían intercambiar el serogrupo expresado mediante mecanismos de switch on-switch off de genes, lo que ya ha sido descrito para otras especies también capsuladas como Streptococcus pneumoniae y H. influenzae. Este tipo de fenómenos tiene su origen en la capacidad de estas especies de adquirir e incorporar ADN exógeno mediante procesos de recombinación, y se consideran estrategias que desarrollan los microorganismos para evadir la respuesta inmune del hospedador, tanto natural como inducida. La colonización en nasofaringe durante el estado de portador favorece este tipo de procesos de intercambio genético. En España, tras la utilización de vacuna A+C primero y posteriormente de vacuna C conjugada, la presión inmune producida podría dar como resultado una selección positiva de este tipo de cepas de grupo C que pasan a expresar cápsula de grupo B. En nuestro caso, y ya que las cepas mayoritarias son C:2a:P1.5, las resultantes de procesos de intercambio genético a nivel del operón capsular serían caracterizadas como B:2a:P1.5. La vigilancia instaurada por el Laboratorio de Referencia de Meningococos para el análisis de este tipo de aislados mostró su presencia ya en 2001, un

Julio A. Vázquez

año después de aplicar las nuevas vacunas conjugadas. Sin embargo, no parece que se haya producido un aumento significativo de las mismas. Es probable que el coste biológico de este tipo de modificaciones sea demasiado alto para producir nuevas variantes con altas probabilidades de supervivencia y expansión. No obstante debe mantenerse una estrecha vigilancia de estos de fenómenos para poder analizar adecuadamente el alcance de las intervenciones en Salud Pública y poder tomar decisiones en cuanto a futuras intervenciones basadas en datos científicos.

BIBLIOGRAFÍA

- BERRÓN S, DE LA FUENTE L, MARTÍN E, VÁZQUEZ JA. Increasing incidence of meningococcal disease in Spain associated with a new variant of serogroup C. Eur J Clin Microbiol Infect Dis, 1998; 17:85-99.
- BORROW R, GOLDBLATT D, ANDREWS N, RICHMOND P, SOUTHERN J, MILLER E. Influence of prior meningococcal C polysaccharide vaccination on the response and generation of memory after meningococcal C conjugate vaccination in young children. J Infect Dis 2001; 184:377-380.
- CDSC. Vaccination programme for group C meningococcal infection is launched. Commun Dis Rep CDR Wkly 1999; 9:261-264.
- CANO R, GARCÍA C, MATEO S. Enfermedad meningocócica. Situación en España en la temporada 1998-1999. Rev. Esp. Salud Pública 2000; 74:369-375.
- FINNE J, LEINONEN M, MAKELA PH. Antigenic similarities between brain components and bacteria causing meningitis: implications for vaccine development and pathogenesis. Lancet 1983; ii:355-357.
- FRASCH CE. Meningococcal vaccines: past, present and future. En: Cartwright K (ed). Meningococcal disease. West Sussex: John Wiley & Sons Ltd 1995; pp 245-283.
- MACDONALD EN, HALPERIN SA, LAW BJ, FORREST B, DANZIG LE, GRANOFF DM. Induction of inmunologic memory by conjugated vs plain meningococcal C polysaccharide vaccine in toddlers: a randomized controlled trial. JAMA 1998; 280:1685-1689.
- MAIDEN MCJ, SPRATT BG. Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet 1999, 354: 615-616.
- MAIDEN MCJ. Population structure of *Neisseria meningitidis*. En: Ferreirós C, Criado MT, Vázquez J (eds). Emerging strategies in the fight against meningitis: molecular and cellular aspects (1ª ed). Norfolk (England): Horizon Scientific Press, 2002; pp 151-169.
- MATEO S, CANO R, GARCÍA C. Changing epidemiology of meningococcal disease in Spain, 1989-1997. Eurosurveillance 1997; 2:71-74.
- POOLMAN JT, FERON C, DESQUENE G, DENOËL PA, DESSOY S, GORAJ KK *ET AL*. Outer membrane vesicles and other options for a meningococcal B vaccine. En: Ferreirós C, Criado MT, Vázquez J (eds). Emerging strategies in the fight against meningitis: molecular and cellular aspects (1ª ed). Norfolk (England): Horizon Scientific Press, 2002; pp 133-149.

- RAMSAY ME, ANDREWS N, KACZMARSKI EB, MILLER E. Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 2000; 357:195-196.
- Salleras L, Domínguez A. Estrategias de vacunación frente al meningococo del serogrupo C en España. Vacunas 2001; 2(supl 2):10-17.
- SWARTLEY JS, MARFIN AA, EDUPUGANTI S, LIU L-J, CIESLAK P, PERKINS B, *ET AL*. Capsule swiching of *Neisseria meningitidis*. Proc Natl Acad Sci USA 1997; 94:271-276.
- VÁZQUEZ JA. Enfermedad meningocócica y vacunación: un nuevo escenario. Vacunas 2001; 2(supl 2):1-4.
- WYLE FA, ARTENSTEIN MS, BRANDT BL, TRAMONT EC, KASPER DL, ALTIERI PL, ET AL. Immunologic response of man to serogroup B meningococcal polysaccharide vaccines. J Infect Dis 1972; 126:514-522.

Tabla 1.- Características bioquímicas de las especies del género Neisseria y Moraxella catarrhalis^a.

Especie	Glucosa	Maltosa	Sacarosa	Lactosa (ONPG)	Fructosa	Crecimientoa 22ºC	Producción de polisacárido ^b	Pigmento
Neisseria gonorrhoeae	+	?	?	?	?	?	NC	?
Neisseria meningitidis	+	+	?	?	?	?	NC	?
Neisseria lactamica	+	+	?	+	?	V	?	+ (amarillo)
Neisseria sicca	+	+	+	?	+	+	+	? (amarillo pálido)
Neisseria subflava	+	+	V	?	V	+	V	+ (amarillo)
Neisseria mucosa	+	+	+	?	+	+	+	? (amarillo pálido)
Neisseria flavescens	?	?	?	?	?	+	+	+ (amarillo)
Neisseria cinerea	?	?	?	?	?	V	?	Grisáceo
Neisseria polysaccharea	+	+	?	?	+	?	+	? (amarillo pálido)
Neisseria elongata	?	?	?	?	?	+	?	Grisáceo/amarillo pálido
Neisseria weaveri	?	?	?	?		+	?	? (amarillo pálido
Moraxella catarrhalis	?	?	?	?	?	V	?	` Grisáceo

^aSímbolos y abreviaturas. +: positivo; :negativo; v: variable; NC: no crecimiento. ^bProducción de polisacárido en presencia de 5% de sacarosa.